Randomness notions and partial relativization

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Randomness notions and partial relativization

We study weak 2 randomness, weak randomness relative to ∅′ and Schnorr randomness relative to ∅′. One major theme is characterizing the oracles A such that ML[A] ⊆ C, where C is a randomness notion and ML[A] denotes the Martin-Löf random reals relative to A. We discuss the connections with LR-reducibility and also study the reducibility associated with weak 2randomness.

متن کامل

Randomness, relativization and Turing degrees

We compare various notions of algorithmic randomness. First we consider relativized randomness. A set is ?-random if it is Martin-L?f random relative to 0_1). We show that a set is 2-random if and only if there is a constant c such that infinitely many initial segments x of the set are c-incompressible: C(x) > |x| ? c. The 'only if direction was obtained independently by Joseph Miller. This cha...

متن کامل

Comparing notions of randomness

It is an open problem in the area of computable randomness whether Kolmogorov-Loveland randomness coincides with Martin-Löf randomness. Joe Miller and André Nies suggested some variations of Kolmogorov-Loveland randomness to approach this problem and to provide a partial solution. We show that their proposed notion of partial permutation randomness is still weaker than Martin-Löf randomness.

متن کامل

Complexity of Randomness Notions

Schnorr famously proved that Martin-Löf-randomness of a sequence A can be characterised via the complexity of A’s initial segments. Nies, Stephan and Terwijn as well as independently Miller showed that Kolmogorov randomness coincides with Martin-Löf randomness relative to the halting problem K; that is, a set A is Martin-Löf random relative to K iff there is no function f such that for all m an...

متن کامل

Higher Randomness Notions and Their Lowness Properties

We study randomness notions given by higher recursion theory, establishing the relationships Π1-randomness ⊂ Π1-Martin-Löf randomness ⊂ ∆1randomness = ∆1-Martin-Löf randomness. We characterize the set of reals that are low for ∆1 randomness as precisely those that are ∆ 1 1 -traceable. We prove that there is a perfect set of such reals.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Israel Journal of Mathematics

سال: 2012

ISSN: 0021-2172,1565-8511

DOI: 10.1007/s11856-012-0012-5